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INTRODUCTION

Many manufacturing, technical, and military organizations are looking towards machine vision to
improve the performance capabilities of automated machines for a large variety of tasks. Real-
time pattern recognition is critical to certain applications and as more sophisticated machines and
sensors are developed higher processing rates for larger amounts of data are required. Due to
the large processing times associated with sequential processors these systems will be most useful
for solving real-time problems if they are implemented in parallel hardware. Optical information
processing systems offer parallel computation and high-density non-interfering interconnections.

Correlation is a basic operation required by many machine vision and pattern recognition sys-
tems. In electronic systems correlations are typically performed using specialized hardware since the
algorithms involved are computationally intensive to calculate. Data can be processed at high rates
by utilizing the massive parallelism and high bandwidth offered by optics technologies. Current
optical correlator systems can perform greater than 1000 correlations per second for 256 x 256 pixel
images with commercially available devices. Near-term advances in optical device development are
expected to greatly increase the data processing rates of future systems.

The Photonics Center at Rome Laboratory currently uses an optical correlator based on bi-
nary phase-only filters (BPOFs) to develop and evaluate optical pattern recognition algorithms for
military applications such as Hostile Target Identification (HTI). Potential civilian applications of
this system are finger-print identification for building security, handwritten character recognition
for the postal service, string matching for content-addressable-memories, and object detection and
recognition for guiding unmanned robots or vehicles. Medical applications include human cell clas-
sification and genome searches in human DN A sequences to locate possible genetic defects. The use
of an optical processor in these applications presents the opportunity for real-time data analysis.

In general, correlation is not invariant to either affine object distortions such as scaling or
rotation or to nonrepeatable distortions of an object’s image by atmospheric conditions, diurnal
temperature variations, shadows, etc. This presents a major problem for any template-based recog-
nition system where the image of an object to be recognized may change in its appearance. To
obtain distortion invariance in a correlator system for real-world problems (e.g. HTI and machine
vision) a large library of templates containing distorted versions of the object is typically employed.
Large template libraries increase both memory storage requirements and search times. Both of these




characteristics are undesirable in a real-time, compact system for use in military applications. We
present various approaches to minimizing these problems in an optical correlator system.

This report presents an overview of the work performed by the analog optical signal processing
group at the Photonics Center of Rome Laboratory from October 1990 until September 1994. Dur-
ing this time the group has published numerous technical papers and reports in the area of optical
signal processing [1]-[24]. In addition to the authors the other members and contributors to the
group (both past and present) are Denise Blanchard, Dr. George Brost, Sandy Halby, Capt. Christo-
pher Keefer, and Jackie Smith. It should be noted that in addition to our in-house technical staff,
Dr. Samuel Kozaitis from the Florida Institute of Technology (FIT) has played a key role in our
optical correlator research and development. This report serves to provide an integrated viewpoint
to our work and formally records the work that has not been included in previous Rome Laboratory
technical Teports. Section 2 of the report outlines our work in the area of phase-only filter optical
correlation and describes a photorefractive image correlator. We discuss reduced-resolution optical
correlator architectures with the intent of developing faster, less expensive, and more compact sys-
tems. Qur work on reduced-resolution filter correlators has been expanded upon by P. C. Miller[25]
and we summarize his work. In Section 3 we present an alternative optical preprocessor system that
makes use of a coordinate transformation to provide a rotation and scale invariant image space.
In Section 4 we outline an optical system that performs image segmentation based on a fractal
dimension estimation algorithm. In Section 5 we present an optical neural network classifier and
finally we present conclusions and possible future directions for our work. ‘




OPTICAL CORRELATION

The most common optical correlator is based on a 4f (four focal length) system architecture as shown
in Figure 2.1. A typical correlator is comprised of a spatial light modulator (SLM) in both the
input and filter planes, two Fourier transforming lenses, and a CCD camera. We begin by describing
architectural optimizations of the 4f correlator to reduce the system size, weight, and cost. We then
discuss optical filter design. While many algorithms exist for computing optical spatial filters our
work has focused on the binary phase-only filter (BPOF) which can be implemented on binary-
valued SLMs. BPOFs are useful for recognizing fixed objects in stationary backgrounds and exhibit
large, narrow correlation peaks as well as effective multi-class discrimination. They can work well
in the presence of background clutter or when an object is partially obscured. In addition, they
have been used to identify and track multiple objects. BPOFs have provided suitable solutions
when objects have a repeatable signature. If an object varies in a limited or known manner, more
complex filters can be used.

2.1 REDUCED-RESOLUTION OPTICAL CORRELATOR

We have proposed a reduced-resolution filter SLM for use in an optical correlator to reduce SLM
addressing times and memory storage requirements [16]. The reduction in filter resolution is shown
to primarily affect the impulse response by addition of copies of the filter image. This problem can
be minimized by placing a diffraction grating in contact with the filter SLM while retaining the
advantages of speed and memory storage. Another advantage of this system is the opportunity to
use shorter focal length lenses to produce a shorter, more compact correlator. Finally the use of a
lower resolution SLMs can greatly reduce the cost of a correlator.

Reducing the amount of data contained in a spatial filter has been previously considered by
others. One approach considers the resolution limitations of SLMs to make optical correlators more
practical[26]. Another approach reduces the passband of a POF to yield a maximized signal-to-
“noise ratio. We use a filter SLM that exploits the full bandwidth but has a lower resolution than
the input SLM. Our approach results in a constant reduction in the amount of data required to
describe a filter.




Input Fourier Correlation
Plane Plane Plane

-+ [ — o | —pa— | —pa | —P

__>
Laser - — — - — o } — -
Light
=
- = CcD
InputSLM [ 1Lens Filter SLM FT Lens Camera

Figure 2.1: Schematic of a 4f optical correlator.

Although a reduced resolution filter correlator may have advantages, its use results in a loss of
information. The lower resolution filter can affect the size and detail of the image used to make a
filter. Knowing the distortion incurred by using a lower resolution device allows its effects to be

minimized.

In this project, we determined the distortion introduced by using a filter that is reduced in
resolution by a factor of M along a linear dimension in an optical correlator. In this way, the
amount of data used to describe the filter is decreased by a factor of M2. We provide general
expressions for the impulse response, signal-to-noise ratio (SNR), and signal-to-clutter ratio (S/C)
for filters reduced in resolution. We also provided guidelines in terms of the size and location of a
filter object for minimizing the effect of reducing the resolution of a filter. Furthermore, we show
by example the effect of reducing the resolution of a filter in both autocorrelation experiments
and cross-correlation experiments containing competing objects. Using these results, the effect
of reducing the resolution of other filters can be predicted for other input scenes. The physical
implications in terms of the effect on the focal length of lenses in the correlator are also determined.

The effect of using a filter of an integer factor lower in resolution of the input plane in a correlator
can be determined using digital signal processing techniques. We create a reduced-resolution filter
in the discrete Fourier domain by downsampling a discrete N x NV matched filter by a factor of M
where {M = 2%;i=1,2,...,logaN}. More generally, the process is described as

ok oIN
3 (77%) = RIX(k. D).

where k and [ are integer values and —N/2 < k.l < N/2,X(k,l) is the original discrete matched
filter; Y (k/M.1/M) is the filter reduced in resolution and is referred to as the optical half-resolution
filter: and R is a resolution operator that defines how the samples of the optical reduced-resolution
filter are to be calculated. For the above equation, Y (k/M.!/M) will be defined only when k/M
and //M have integer values.
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We made use of an FFT algorithm to analyze the effect of the reduced-resolution filters. How-
ever, the FFT algorithm requires the same number of samples for both the input and output.
Therefore, to perform simulations using the FFT, the optical reduced-resolution filter was extended
by interpolation in order to have the same number of samples as a filter at full resolution.

The reduced-resolution filter uses the full bandwidth of the input image; one pixel of a reduced-
resolution filter corresponds to M? pixels of the full-resolution filter. The optical reduced-resolution
filter will result in a constant data reduction by a factor of M2. It can be represented digitally by
N x N samples with blocks of M x M samples having the same value. The interpolated N x N
version of the optical reduced-resolution filter is referred to as a reduced-resolution filter.

As a result of the downsampling technique used to obtain the reduced-resolution filters multiple
copies of the filter image are in the impulse response of the reduced-resolution filter. Therefore, the
copies will also correlate with the input image and multiple correlation responses can appear in the
correlation plane. Because the impulse response of the filter is known, it can be used to determine-
the performance of a correlator as a function of resolution for specific input objects. In addition,
we provide guidelines so that results for specific cases can be predicted.

We consider the case in which an object used to make the filter is centered and a translated
object in the input plane produces a correlation peak with a full-resolution filter at a distance
ko, lo, (ko,lo > 0) from the center of the correlation plane. When using a reduced-resolution filter,
secondary correlation responses will occur at locations

M-1M-1

o> (ko—%,lo—%).

1=0 h=0

The magnitude of the secondary correlation peaks depend on both the size and location of the
object used to make the filter. The impulse response of a reduced-resolution filter will be least
attenuated near the center, therefore an input image will correlate more with the central portion of
an image used to make a filter. Therefore, we restricted our discussion to the case when an object
used to make a filter is centered. Furthermore, the correlation response due to copies of an object
will tend to be minimized for relatively small objects since the copies appeared centered at minima
in the impulse response.

The secondary correlation peaks can be significant if the object used to make the filter is large
enough. An object should be restricted to a N/M x N/M pixel region to avoid aliasing in the
correlation plane. The amount of aliasing that is tolerable is dependent on the specific images used
in the correlator. Therefore, the correlation response is dependent on the size of the object used to

_make the filter. Although the object used to make the filter must be restricted in size, the object

to be identified can be located anywhere in the ¥ x N region of an input image.

The decreased resolution of the filter SLM will change the focal lengths of the lenses in the
correlator. Shortened correlators have been previously demonstrated; however, they have not shown
a decrease in focal length[27]. The change in focal length depends on the number of pixels in the
filter and the specific SLMs being used. The focal length of the Fourier transform lens on the
correlator is given as [27]

.'V.Z(ll(lg
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where N, is the number of pixels along a side of the filter SLM; dy and d; are the center-to-center
spacing of the pixels in the input and filter plane SLMs, respectively; and A is the wavelength of
the light being used. Note that the focal length of the system is proportional to N if other factors
remain constant.

Our experiments demonstrate that under certain conditions, reducing the resolution of a BPOF
can be used in an optical correlator with similar performance as compared to full-resolution filter
performance. The significance is that the amount of data needed for a reduced-resolution filter is
M? less than a full-resolution filter where M is the factor that the filter was reduced by in a linear
dimension. Further details of the reduced-resolution filter construction, performance measures, and
results can be found in references [16, 23].

Recently, our work on reduced-resolution filter design has been extended using an optimal design
technique for making the filters more robust to the resolution reduction [25]. In accordance with our
results, Miller reports that the reference object (target) size in terms of pixels is the most important
parameter with respect to the filter reduction. Miller’s optimal design technique provides greater
reductions in filter resolution by factors of 4 to 16 over our downsampling techniques. The optimal
design technique involves high-pass filtering the reference object imagery as a preprocessing step
in the filter construction. His findings indicate that for a given target size, filters constructed with
high-pass imagery were marginally more robust to greater amounts of resolution reduction than
filters constructed with unprocessed target images.

2.2 PYRAMIDAL PROCESSING

A limiting factor in the application of optical correlators is that the number of pixels in currently
available SLMs is often not large enough for military applications. One approach is to process
large images at lower resolutions beginning with the lowest resolution. Pyramidal processing is a
multiresolution processing technique in which an image is processed multiple times, each time at a
different resolution. In pyramidal processing an image is represented by a series of lower resolution
versions of itself up to and including the original image.

A common way to generate an image pyramid is to filter an image with Gaussian functions of
increasing standard deviations and downsample the image by increasing amounts. First, an original
2N x 2N image is low-pass filtered to eliminate spatial frequencies greater in magnitude than p/2
where the spatial frequencies of the image extend {from —p to +p. The image is then downsampled
by a factor of 2 to yield a 2N — 1 x 2N — 1 image. To generate other levels of the pyramid, the
9N x 2N image is filtered to eliminate spatial frequencies greater in magnitude than p/L, then
downsampled by a factor of L to yield a 2N — L x 2N — L image. If the original image f(m,n) is
referred to as level 0, then fr(m,n) represents different versions of the original image at level L,
where 0 < m,n < 2N — L — 1, and L is the level of the pyramid {L =0, 1,2,...,N}.

Generally, low-pass filtering produces grey-leveled values at some pixels. Since grey levels cannot
be implemented on binary SLMs, we considered an alternative way to generate a pyramid structure.
Morphological processing is used here instead of Gaussian low-pass filtering to create a pyramid
structure. In a morphological pyramid, an opening operation can be treated as a low-pass (size)
filter that performs smoothing of the contour of an object. In addition, the output of the opening



operation is binary so that the resulting opened and downsampled image can be displayed on an
SLM.

Images of LN x LN pixels can be processed in parallel with an optical correlator using SLMs
of N x N resolution by employing a pyramidal processing technique. The use of morphological
operators to generate a pyramid image representation allows the technique to be implemented with
binary SLMs and appears to give similar results to that of low-pass filtering. Our results show that
the SNR and discrimination decrease with increasing L and that this technique is limited by the
decrease in SNR. The SNR is primarily affected by the scaling factor due to the downsampling.

Our experiments show that we can use a correlator with 128 x 128 pixel resolution to successfully
identify an object in a 512 X 512 image. In our experiments the use of morphological operators
allow binary correlators to achieve SNR values within a factor of one-half that of the maximum
result obtained when an ideal low-pass filter had been used. The discrimination abilities are also
comparable to the ideal results. Due to the relatively small number of pixels in currently available
SLMs, this technique is useful for the processing of large images in spite of the added complexity
of the technique. More details of our research in multi-resolution processing for optical correlators
can be found in references [3, 22].

2.3 DISTORTION INVARIANT OPTICAL FILTER DESIGN

A major difficulty encountered when using a BPOF in an optical correlator is its sensitivity to
changes in the object’s appearance. Images of an object can vary significantly depending on aspect
angle, lighting, atmospheric effects, and a host of other variables. In addition, object boundaries
may be poorly defined and buried in the background. Identifying an object that has a nonrepeatable
signature is one of the key technical challenges of automatic object recognition.

BPOFs are useful for recognizing fixed objects in stationary backgrounds. BPOFs exhibit
large and narrow correlation peaks and provide effective multi-class discrimination[28, 29]. They
can work well in the presence of background clutter or when an object is partially obscured[30].
BPOFs have provided suitable solutions when objects have a repeatable signature. If the image
of an object varies in a limited or known manner, more complex filters, such as the synthetic
discriminant function (SDF), can be used.

2.3.1 Synthetic discriminant function (SDF) optical filters

SDF optical filters are created by using linear combinations of the input reference images during
filter construction. Using this method it is possible to overcome much of the correlator’s sensitivity
to object distortions. If the distortions are predictable or repeatable (e.g. scale and rotation
distortion), then it is possible to create a filter or small set of filters to recognize each of the
distorted views of the object. Typically we train the SDF filter in an iterative mode adjusting the
relative weight of each object in the linear combination in order to obtain a constant correlation
peak height for each reference input. By iteratively training the SDF filter, system noise and
imperfections can be learned, effectively performing an on-line calibration of the system. We have




investigated SDF filters for threshold invariance[17], scale and rotation invariance, and invariances
to other distortions[21].

This section contains a brief discussion of how the SDF filters are made. A more detailed
description of the approach we followed has been previously reported [31]. Assuming that a specified
correlation response is produced for a set of training images, the need for displaying different filters
is reduced or eliminated. A conventional SDF is a weighted combination of images that can be
described as’

.s(:z:, y) = Z antn($s y)’

where t,, are centered training images and a, are weight coefficients. SDF synthesis techniques
may be used to determine the weight coefficients [32, 31). The complex conjugate of the Fourier
transform of s(z,y) is the matched filter 4

S(u,v) = Fls(z,y)]"
where F is the Fourier transform operator.

Converting the SDF-matched filter to a BPOF may result in a severe loss of information.
Recently, an improved version of an SDF, called a filter SDF (fSDF), has been introduced that
includes the function modulation characteristics of the device onto which the filter is mapped in
the synthesis equations [31]. For f{SDF-BPOFs, the coefficients an can be iteratively trained based

on the formula '
, . mt
ait! =a;+ﬁ[cn—60 (—’f)} (2.1)

where ¢ is the iteration number, 3 is a damping constant, and m; is the modulus of the peak
correlation response of image t,(z,y) with a filter made with the coefficient vector a*. In the exper-
iments described in this report, the initial solution vector was taken to be the desired correlation
response vector, a® = ¢ = 1. The initial fSDF, s(z,y), was then found and cross-correlated with
each training image. The values of the correlation heights were then placed into Eq. 2.1, and an
updated a was found. A new s(z,y) was found and the procedure is repeated. The modulation
characteristics of an a BPOF SLM was included by calculating intermediate cross-correlation in
Eg. 2.1 with BPOFs.

2.3.2 SDF filters applied to thresholded imagery

An optical correlator that uses binary SLMs requires the conversion of sensor imagery to binary
imagery. The conversion process is highly vulnerable to noise and variations of the object and
background. Therefore. an object can appear differently after the image is converted to a binary
image due to environmental or other conditions. The reliability of the conversion process is critical
for object recognition because the binary image contains shape features of the object. In real-world
imagery, the global shape of an object is frequently too perturbed to generate a reliable, specific
version of the object. The binary result is often a version of the object that changes in an unknown

or nonrepeatable way.

An automatic method is needed for detecting objects with BPOFs using imagery from infrared
(IR) sensors. By using digital image processing techniques. images can be confined by simulation




to vary in a limited but unknown manner. SDF-BPOFs are then used to identify objects. It is
sometimes difficult to evaluate the performance of a distortion-invariant method because of the lack
of a suitable performance measure. Therefore, to help evaluate the real potential of this approach,
imagery is presented from actual sensors that were not from the original training set.

We present a method for identifying objects in infrared imagery using SDF-BPOF's. The method
is suitable for applications that involve objects with-a nonrepeatable signature. Rotation and scale
invariance should be achieved by storing a bank of filters that are rotated and scaled versions of
filters developed here.

IR imagery (8-14 um) of ground scenes from actual sensors were used to evaluate the proposed
method. Images were digitized with 128 x 128 pixels with 8 bits/pixel. Because the application
was to binary SLMs, the imagery had to be thresholded.

Thresholding was performed by choosing a single threshold value for the entire image. Threshold
values can be chosen several different ways. They can be based on the noise statistics of an image, a
histogram of the image, or a fixed value chosen near the middle of the available pixel values. When
the object and background are within an image are obvious, a threshold value can be easily chosen,
and different methods usually give similar results. Other techniques can be used if the imagery is
more complex. In either case, a thresholding method should be automatic in that it should perform
similarly with a variety of imagery under various lighting and atmospheric conditions.

In the imagery we examined, the background and object were easily separated; however, edges
between them were not well-defined. We used digital image processing techniques to implement a
thresholding method. This isodata technique examines peak values in the histogram of an image. A
threshold value was chosen between peaks that were associated with the object and the background
so that the object could be segmented from the background. If noise or atmospheric distortion was
present, the peaks of the histogram would change their position or shape, but they will usually
be identified. Choosing a threshold value between peaks of a histogram often results in an image
that is similar to the silhouette of the object. As variables such as lighting, noise, and atmospheric
effects within an image change, resulting thresholded images will remain similar but will often be
different in an unknown or nonrepeatable way.

Different threshold values of an image containing an object may produce different binary images.
An IR photograph with a 0.3m ground resolution was digitized so that each pixel corresponds
to a 1.4m X 1.4m area and is shown in Figure 2.2. Figures 2.3a-2.3d show versions of Figure
2.2 thresholded at different values; Figures 2.3a and 2.3d are thresholded at values 84 and 108,
respectively, where black and white pixels have values of 0 and 255. Images that were thresholded
with values between 84 and 108 produced a different image for each value; values outside this range
produced severely distorted images and were not considered. There is just less than a 1000-pixel
difference in the number of white pixels in Figures 2.3a and 2.3d.

The IR image shown in Figure 2.2 was used to produce training images for several {SDF filters.
Threshold values between 84 and 108 were used to generate the training images. SDFs were made
that had three, five, and seven training images. Many different combinations of images were used
to generate fSDFs using the algorithm in Eq. 2.1. An fSDF-BPOF was produced for every possible
training set, and one filter was chosen for a training set of a fixed number. To choose a representative
fSDF for a given number of training images, thresholded versions of Figure 2.2 at values between




Figuré 2.2: Infrared image from which training sets were derived.

| Filter | Threshold values (Range 0-255) |
SDF3 92, 96, 100

SDF5 88, 92, 96, 100, 104
SDF7 84, 88, 92, 96, 100, 104, 108

Table 2.1: Threshold values for image of Figure 2.2 used to produce training images for SDF filters.

84 and 108 were correlated with each SDF filter and the correlation response examined. The fSDF
filter that produced the most consistent correlation heights for the range of thresholded images
was chosen for further analysis. Using this procedure, one fSDF filter was chosen for each of the
three, five, and seven training images. The threshold values of Figure 2.2 used to produce the
training images used in our experiments are shown in Table 2.1. An increase in the number of
training images added images with threshold values outside the range of the original training set.
Therefore, the addition of training images extended the distortion range of the filter.

Results show that the distortion range of BPOFs was increased to useful amounts for automatic
object recognition using the preprocessing described here and the proper choice of training set for
an fSDF-BPOF. Using an image from an actual sensor not in the training set, the level for the
decision criterion for the best BPOF increased between 6.8% to 13% depending on the fSDF filter
used. Had the BPOF been made from a sample image not threshold at the optimum level, the
decision criteria for the poorest performing BPOF increased between 22.3% to 28.5% .

Because actual sensor data varied in an unknown way, the choice of the optimum training set
for the fSDF-BPOFs was not straightforward. However, linearly independent images for SDF filters
can be created from a set of training images using an orthogonalization process. Decreasing the

10




b

& : d

Figure 2.3: Thresholded versions of Figure 2.2. Thresholded at gray-level values: a) 84, b) 92, ¢)
100, and d) 108.
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sensitivity of a BPOF to the different ways that an input can vary is essential to automatic object
recognition using BPOFs. Further details of this work can be found in reference [17].

2.3.3 Feature-based optical filters

Using an optical correlator, we experimentally evaluated a BPOF designed to recognize objects not
in the training set used to design the filter. Such a filter is essential for recognizing objects from
actual sensors. We used an approach is that is as descriptive as a BPOF yet robust to object and
background variations of an unknown or nonrepeatable type. We generated our filter by comparing
the values of spatial frequencies of a training set. Our filter was easily calculated and offered
potentially superior performance to other correlation filters.

We investigated the use of a BPOF that was calculated from an objects features. In this way,
we attempted to make a BPOF more robust to unknown variations than other designs. We have
previously shown by computer simulation that our filter offered superior performance to SDF filters
[20] for our problem; here, we provide experimental results for a version of our filter. We considered
a one-class problem; our results were generated using a training set from only one class of objects.
To help evaluate the potential of our approach, we used imagery from actual sensors that were not

from the original training set.

In actual sensor imagery, the global shape of an object is frequently too distorted to generate a
specific version of the object. Therefore, an input object may not correlate well with a filter even
though the input and filter are from the same class [17, 33]. In contrast to SDF filter formulation,
we developed a filter whose values were determined by features of the objects in a training set. We
attempted to find a filter that represented the critical characteristics of a class of objects so that
objects outside the training set but in the same class could be identified. Therefore, we examined
features that were invariant with respect to the training set.

Generally, the cross-correlation between two images is maximized when the mean squared error
(MSE) between the images is minimized. The correlation operation measures the similarity of
images; therefore, images will correlate well if their Euclidean distance in signal space is small. In
signal space, an image is represented as a point and each axis may represent a spatial frequency.
A point along an axis represents the value of that spatial frequency. The region in signal space
that represents images that correlate well with a given image is generally a multidimensional sphere
centered on the given image. The radius of the sphere is determined by a threshold in the correlation
plane where any correlation response above the threshold is considered to be a match with the given
image. As the threshold decreases, the radius of the sphere will increase.

We attempted to form n training images into a cluster in signal space by retaining only spatial
frequencies with a small spread of values. We examined the Discrete Fourier Transforms (DFTs) of
the training images at each spatial frequency. The DFT of the kth training image was represented
by Si[u,v] where u and v are discrete spatial frequencies. The values of the spatial frequencies
were examined across the entire training set in terms of their similarity. We considered the distance
between their values in the complex plane as a measure of their similarity. The smaller the distance,

the more similar the values.

In conclusion the feature-based filter offered a range of performance. In the case where none of
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the pixels were set to zero in the filter, the fSDF and feature-based filter offered similar performance.
The feature-based filter was slightly more consistent and had broader correlation peaks for objects
within the training set than the fSDF filter. Neither filter appeared to be useful for recognizing
objects outside the training set.

As pixels of the filter were set to zero in the feature-based filter, the correlation peaks within the
training set became more consistent even though their average height decreased. As the number
of pixels set to zero increased, the correlation heights became more consistent but broader. When
images of the same class as the training set but not in the training set were used as inputs, the
feature-based filter was potentially useful. Our experiments involved five training images. The
use of more training images suggests that more possibilities are available in trading off between
consistency and broadness of the correlation results. In this way, the feature-based filter can be
made robust to recognized object outside the training set.

2.3.4 Ternary POFs

We developed ternary phase-only filters that identified objects outside a training set in the presence
of unknown or nonrepeatable distortions. In our experiments, our statistical filters recognized
objects within the same class and in the presence of noise better than another popular binary
distortion-invariant filter design.

In contrast to previous attempts at distortion-invariant BPOF formulation, we developed a filter
whose values were determined by features of the training set. We attempted to find a filter that
represented the critical characteristics of an object so that objects outside the training set could
be identified. Because correlation filters are derived from the Fourier transform of an object, we
examined feature extraction in the Fourier domain. We considered the BPOF's of input images as
a set of features to recognize objects and used a statistical approach to examine features that were
invariant with respect to the training set. We retained those Fourier features that were invariant
among a training set, and set to zero those that varied using a technique similar to factor analysis
to design a ternary filter.

The principle components method, which is related to factor analysis, has been used to design
correlation filters. In contrast, we examined an ensemble of BPOFs to select spatial frequencies to
recognize images outside of our ensemble.

Our statistical filters offered a range of performance depending on a parameter p. In the case
p = 1 (none of the pixels set to zero), the {SDF filter offered slightly better performance. However,
as p increased the correlation peaks within the training set became more consistent and their
normalized average correlation height increased. When images in the same class as, but not in the
training set were used as inputs, our statistical filters had a higher normalized average correlation
height than the fSDF filter. Furthermore, in most cases, our statistical filters produced more
consistent and higher normalized average correlation heights than the fSDF filter in the presence
of noise. Therefore, in our experiments, our statistical filters recognized objects within the same
class and in the presence of noise better than the fSDF filters.

Our statistically designed filters were more easily calculated than an fSDF filter. Our filters
required on the order of calculating N FFTs. In contrast, the {SDF approach requires a cross-
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correlation between every training image and filter every iteration. This requires on the order of
Ng FFT calculations where g is the number of iterations and has been generally set to ten [31].
Therefore, the time and number of operations required to calculate our statistical filters were about
an order of magnitude less than for the fSDF filter.

Because our statistically designed filter recognizes an object based on its features, other objects
may be identified if they have similar features. Therefore, it may be important to include discrim-
ination ability into our statistically designed filters. Further details of our work can be found in

reference [10].

2.4 PHOTOREFRACTIVE IMAGE CORRELATOR

This section briefly describes a correlator fabricated by Accuwave of Santa Monica, CA under di-
rect support from Rome Laboratory. Details of this work are given in Rome Laboratory Technical
Report RL-TR-94-154 [2]. The holograms were recorded at Accuwave and the system was tested
in-house at the Photonics Center. The optical image correlator uses orthogonal, wavelength mul-
tiplexed Fourier transform holograms recorded in a photorefractive crystal. Cross-correlation and
auto-correlation measurements were obtained using randomly selected test images against a set of
reference images stored in the orthogonal data storage volume hologram. More than 40 holograms
were written in the 645-651nm wavelength range with > 2% diffraction efficiency and 1.5 A wave-
length separation. A low power tunable external cavity semiconductor laser was used for hologram
readout, demonstrating the portability of the approach. The input image translation tolerances on
the correlation output and the effect of using partial images during readout were also investigated.

This type of correlator uses a fixed set of reference filters recorded in the volume hologram.
There is an upper limit on the number of filters that can be stored in the crystal and that may
restrict this system architecture to applications that have a well defined feature space to correlate
against. The primary advantage of this system is that the entire template database is ‘static’ and -
no computer interface is required to change the correlation templates. This differs from the typical
correlation systems which are limited in speed by the filter SLM/computer interface. The speed
limitations of this correlator are influenced by the detector integration time and the rate at which

the laser can be tuned.
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OPTICAL LOG-POLAR
COORDINATE TRANSFORM
PREPROCESSOR

Log-polar coordinate transforms are a well established technique for highlighting specific scale
and totation properties of an object of interest[34]. In the human vision system the eye-to-brain
mapping is a log-polar mapping process(35]. The log-polar coordinate transform presented in this
report provides a feature space where Cartesian angular position is remapped to the x-axis and the
radius is remapped to the y-axis. When the remapped image of the object of interest is used in a
correlator, object variations in rotation and scale are represented as linear shifts on their respective
axis of the correlation output plane. These linear shifts of the correlation peak provide information
about the size and rotation of the object with respect to the reference filter. In machine vision
applications and image processing, estimation of the orientation and size of an object are important
tasks. It has also been shown how the log-polar transform can simplify the direct estimation of the
time to impact for autonomous vehicles[35).

A number of authors propose using log-polar remapping to overcome the problem of recognizing
objects which vary in rotation and scale {34, 36]. The optical image remapper we describe can
be integrated with a correlator or neural network for the purpose of determining the scale and
rotation of a particular object. An advantage of the optical image remapper versus electronic
implementations is the ability to perform the log-polar transformation of an image in parallel,
theoretically faster than possible with a digital electronic processor. Potential applications of this
optical remapper include machine vision for identifying known objects in various orientations and
target recognition of objects on the battlefield from high altitude surveillance platforms.

Casasent and Psaltis proposed a feature space that is invariant to scale and rotation changes
in order to reduce the number of correlation filters required for a recognition task{34]. The key to
their approach is to perform a coordinate transformation in order that the scale and rotation of a
given object is represented in a new feature space or coordinate axis system. This feature space
would be mapped in rectangular coordinates with In(r) mapped along one axis, where 7 is radial
position in Cartesian coordinates, and the angular position § mapped along the orthogonal axis.
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Figure 3.1: Schematic of optical system to perform log-polar coordinate transform.

The new coordinate axes can be represented as

In(r) = In /(22 + y?)

and
6 = arctan(y/z).

The major limitations in using the coordinate transformation in machine vision or pattern recogni-
tion is that it only works well for a single object and the object must be centered in the Cartesian
coordinate system before remapping into the log-polar coordinate system. There are many existing
digital recognition schemes that detect blobs (possible objects) within a scene and then create a
region of interest (ROI) about the centroid of the object. This blob detection technique can also
be performed using an optical correlator. In general this recognition scheme would solve the single
object per scene limitation and the centering problem. Another method of centering the object
within a scene is to perform a Fourier transform (FT) of the scene and record only the magnitude
of the spectrum [34]. This eliminates the linear phase terms in the spatial frequency domain which
correspond to the shifted positions of the object within the spatial domain.

The coordinate transformation is performed by the combination of a computer generated holo-
gram (CGH) and a Fourier transforming (FT) lens as shown in Figure 3.1. The CGH has a phase

transmission ¢ given by

-2rzg
AfL

where z¢ is a constant of the same units as ¢ and y, A is the laser wavelength, and fr, is focal
length of the FT lens. A plot of the phase transmission is shown in Figure 3.2. The CGH used in
the experimental set-up is a binary phase level device with 1000 points in each direction, z and y,
in a feature space of a 10mm?. The constant zg is set to Imm. Our system design is intended for
use with a HeNe laser (A = 632.8nm) and the FT lens design focal length is 200mm. A picture of
the actual transparent CGH device is shown in Figure 3.3.

Hz,y) = ( ) [xln (z? + y?) — yarctan (y/z) — x|,
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Figure 3.2: Plot of the phase transmission for a 32x32 point array.

Figure 3.3: Picture at 100X magnification of the central portion of the CGH used to perform the
log-polar coordinate transform.
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ngure 3.4: a) Sample input image and b) the output of the optical log-polar preprocessor.

Again referring to Figure 3.1 we note that the CGH is placed in close proximity to the input
SLM in order to minimize diffraction effects. A Michelson interferometer is used to obtain the
superimposed images of the coordinate transformation in the Fourier plane of the FT lens. Figure
3.4 shows a sample input image and the corresponding output of the log-polar optical preprocessor.
The Michelson interferometer produces two identical patterns on the polar axis by displacing the
interferometric path with respect to the horizontal axis. There is a slight region of interference
between the two paths where overlap occurs. This overlap interference causes a fringe pattern
which degrades the FT image slightly. A CCD camera collects the intensity of the coordinate

transform output at a distance fr from the lens.

An optical correlator employing this system as a front-end preprocessor, as shown in Figure
3.5, can then use a single log-polar reference filter to compare to the unknown input image. In this
system the location of a positive correlation peak can be used to calculate the identified object’s
scale and rotation[13]. Utilizing this preprocessing system can greatly reduce the number of filters
required to perform object recognition. Further details of the system and its performance can be

found in reference [6].
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Figure 3.5: Optical system incorporating log-polar preprocessor and a 4f correlator.
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4

OPTICAL FRACTAL DIMENSION
ESTIMATION

This research investigated the use of fractal dimension measure to segment spatially disjoint regions
of interest from simulated fractal clutter or background [5, 12, 18]. The underlying assumption is
that a given region of interest in a real-world image has a different fractal dimension than its
background. We investigated virtually illuminated, digitally simulated fractal surfaces with known
fractal dimensions. The backgrounds we considered had various degrees of texture roughness. We
constructed an optically based image segmentation system to perform the otherwise computation-
ally intensive Fourier transform of the image to be segmented. We compared the performance of
this system to an all digital approach. Though useful for such things as aerial and space based
reconnaissance, there are many other applications that could also benefit from the techniques de-
scribed here. For instance, when applied to machine vision applications, these techniques could
help reduce the time required to locate some tool against spatially disjoint clutter. They could
also prove useful to applications involving robotic navigation of guidance for hazardous material
cleanup. In both cases additional processing will allow the machine to make decisions based on
information from a few regions of interest. These techniques could also possibly prove useful as a
preprocessor of imagery generated by medical scanners. The rationale is that a growth may have
a different fractal dimension than the surrounding tissue.

Previous theoretical and experimental work [37, 12] established a relationship between the
topological features of a fractal surface, the surface’s illuminated image, and its power spectrum.
From these relationships, we estimate a fractal dimension measure from an optical Fourier transform
and digital post-processing its power spectrum. From these results, certain inferences can be drawn
concerning the location of regions of interest. Namely, the techniques discussed here can quickly
spot features having different fractal dimensions from the surrounding clutter.

This investigation compared the ability of an all digital technique to a hybrid optical-digital
technique for estimating the fractal dimension of the computer generated imagery. The digital
method took a fast Fourier transform of the illuminated image, and used that to calculate the
image’s fractal dimension. The optical-digital technique did essentially the same thing, though the
Fourier transform was taken optically. A Fourier lens, a 256 X 256 Semetex Magneto-Optic SLM
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and a CCD camera at the Fourier plane composed the optical system. Once we had the Fourier
transform, digital post-processing calculated the fractal dimension of the original illuminated image.
This digital post-processing was identical in both the digital system and the hybrid optical-digital
system.

4.1 SURFACE GENERATION AND ILLUMINATION

We used the spectral synthesis method to generate fractal surfaces [38]. First, we generated two
dimensional random Fourier components G; ; with a mean amplitude of zero and a standard devi-

ation '
0,2 — (22 +j2)_(H+1)/2,

on the (7, j)th random discrete Fourier component, where H is related to the desired fractal di-
mension D [18] of the surface by D = 2 — H. A computer was used to perform an inverse Fourier
transform to generate a fractal surface g where

n-1n-1

g(z,y) = Z Z G, exp [2mi(ke + ly)).

k=0 [=0

Surface ¢ was illuminated using a pure Lambertian model where the intensity at a particular
location I(z,y) is given by :
I(z,y) = cos(ps,y),

where p; , is the angle between the normal of g at (zo, yb) and the direction to the infinitely distant
point source illuminant. The normal Ny at (zg, yo) is

No = gz(z0, y0)1 + gy(0, %0)j — k.

We calculated the power spectrum, Pg(f,t) of I by summing the squares of amplitudes within
particular frequency rings. We then band-pass filtered the power spectrum, plotted it on a log-log
graph, and fitted it to a line. A linear relationship exists between the slope of the line —m, and
the fractal dimension D of the original illuminated image [37] where

m
D=3-—.
373

Twelve surfaces were created using the spectral synthesis method described above. llluminating
each surface from a variety of angles required knowledge of the normal to the surface at each of
the 65,536 points composing the surface. We derived the normal of g(z¢,yo) from the partial
derivatives as described above. To get these partial derivatives we used discrete Fourier transforms
to numerically approximate these partial derivatives. This approach was very compute intensive,
and limited the number of Fourier components we could use.

Six of these twelve surfaces used 16 x 16 Fourier components and the other six used 32 x 32
components. For each set of surfaces, we varied the H parameter from 0.0 to 1.0 in increments of
0.2. A computer virtually illuminated each of these twelve surfaces from six angles, and generated
simulated imagery as viewed from directly above. The six angles of illumination varied from 0° to
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Figure 4.1: Schematic of optical fractal dimension estimation system.

90° relative to the viewing angle. We stored the 72 resulting images in 256 X 256 BMP format gray
scale files.

We should note here that the surfaces images are not self shadowing. To establish certain
baseline characteristics of the algorithm and the optical system’s performance, we decided to remain
consistent with the notions established in previous literature on this subject {37]. Additionally, the
surfaces considered followed the properties of a pure Lambertian illumination model for the same

reason.

4.2 OPTICAL VS. DIGITAL FRACTAL DIMENSION ESTIMA-
TION

An optical system like that shown in Figure 4.1 performed a Fourier transform of each of the
72 images. This setup could take the Fourier transform only of binarized images since Semetex
256 x 256 SLM used in our experiment is a binary device. As such, we thresholded the grayscale
images at their average intensity level before placing them onto the SLM. The Fourier transform
of the image on the SLM was imaged onto the CCD camera. A frame grabber card then captured
this image into a personal computer. We then clipped and placed the image from the camera into
a binary file for image processing.

The digital technique used the fast Fourier transform (FFT) routines in the Image Pro Plus
software package running on a 33MHz 80486DX computer. With Image Pro we calculated the
FFT of all the illuminated surface images and stored the amplitude information in BMP binaries.
The phase information was discarded. Each 256 x 256 Fourier transform required approximately
five seconds to compute. Figure 4.2 shows a typical image from its surface contour map, to its
illuminated image, to the image of its FFT. An example of the images taken from the optical
system was not easily ported into this report.

Additional processing calculated the power spectrum of each of the 144 Fourier images and
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Figure 4.2: Example of image generation and processing. a) Contour map, b) illuminated image,
and ¢) Fourier Transform of illuminated image.

[H/t ] o0° [ 18 | 36° | 54° | 72° | 90° |
0.0 [2.043 [ 2.005 | 1.944 | 1.906 | 1.905 | 1.940
0.2 [ 2.123]2.094 [ 2.024 | 1.973 [ 1.964 | 2.002
0.4 [ 2.198 ] 2.172 | 2.102 | 2.049 | 2.038 | 2.070
0.6 | 2.236 | 2.231 | 2.211 | 2.188 | 2.183 [ 2.192
0.8 | 2.011 | 2.044 | 2.114 | 2.140 | 2.128 | 2.109
1.0 | 1.549 [ 1.606 | 1.739 [ 1.864 | 1.870 | 1.793

Table 4.1: Digital fractal dimension results D for 16 x 16 Fourier components with parameter H
and illumination angle ¢.

saved the data to ASCII files. To reduce the effects of noise with the optical system (arising mainly
from the pixelation of the SLM), we blocked the sections of the optical Fourier transform extending
both horizontally and vertically from the DC. A computer digitally bandpass filtered all of the
Fourier transforms and graphed the resulting power spectra on a log-log plot.

"The slope of the line fit to the data in the log-log plots is —m. Tables 4.1 through 4.4 show
the values for D in each of the 144 Fourier transforms. The H value refers to the parameter for
generating the fractal surface, while ¢ refers to the angle of the illumination. Except extreme cases
in illumination angle or the parameter H, the digitally computed values cluster closely to each
other for a given fractal dimension. The range of fractal dimension results for a particular value of
H does not intrude upon the range calculated for another value of H, though it does occasionally
occur.

We now consider occluded fractal surfaces illuminated from a variety of angles. A geometric
shape (e.g. square) can be placed over part of the illuminated image to see how this changes the
fractal dimension measure D from the non-occluded imagery (see Figure 4.3). This was done with
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[H/t] 0° | 18° | 36° | 54° | 72° | 90° |
0.0 [ 1.799 | 1.819 | 1.781 | 1.745 [ 1.744 | 1.766
0.2 | 1.91 | 1.92 | 1.876 | 1.832 | 1.828 | 1.860
0.4 | 2.043 | 2.074 | 2.033 | 1.986 | 1.974 | 2.002
0.6 | 2.244 | 2.307 | 2.286 | 2.246 | 2.230 | 2.260
0.8 | 2.261 | 2.432 | 2.510 | 2.522 | 2.518 | 2.509
1.0 | 1.751 | 2.072 | 2.311 | 2.434 | 2.442 | 2.351

Table 4.2: Digital fractal dimension results D for 32 x 32 Fourier components with parameter H
and illumination angle ¢.

[H/t] 0° [ 18 [ 36° | 54° | 72° | 90°
0.0 [1.707 [ 1.765 [ 1.652 [ 1.613 | 1.704 [ 1.776
0.2 | 1.745 | 1.713 [ 1.732 | 1.685 | 1.865 | 1.824
0.4 [ 1.735 [ 1.740 [ 1.700 | 1.809 [ 1.828 | 1.844
0.6 | 1.853 [ 1.791 | 1.790 | 1.760 | 1.805 | 1.836
0.8 | 1.845 [ 1.806 | 1.876 | 1.823 | 1.872 | 1.900
1.0 [ 1.765 | 1.989 | 2.013 | 1.960 | 1.996 | 1.965

Table 4.3: Optical fractal dimension results D for 16 x 16 Fourier components with parameter H
and illumination angle ¢.

[H/t] 0° [ 18 [ 36° | 54° | 72° | 90° |
0.0 [1.517 [ 1.803 [ 1.804 | 1.715 | 1.651 | 1.784
0.2 | 1.503 | 1.804 [ 1.803 | 1.581 | 1.667 | 1.868
0.4 | 1.448 | 1.658 [ 1.494 | 1.514 | 1.709 | 1.837
0.6 | 1.473 [ 1.459 | 1.527 | 1.602 | 1.784 | 1.828
0.8 [ 1.402 | 1.718 [ 1.611 | 1.752 | 1.817 [ 1.847
1.0 [ 1.759 | 1.885 | 1.814 | 1.833 | 1.823 | 1.873

Table 4.4: Optical fractal dimension results D for 32 x 32 Fourier components with parameter H
and illumination angle t.
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Figure 4.3: a) Uniform pulse image and b) its Fourier Transform, ¢) random pulse image and d)
its Fourier Transform.

both a uniformly shaded square covering the middle of the selected images, and with a square region
filled with random 8-bit values. (We call them a uniform pulse and a random pulse respectively).
Tables 4.5 through 4.8 show values for D when we emploved the two techniques on the two sets of
surfaces.

In each case. we handled the images identically to those in the non-occluded case, and reduced
the data in the same fashion. Due to the large amount of energy in the higher frequencies of the
random pulse. the slope increased. decreasing the value of m (flattening things out a bit). Similarly,
there was a great deal of spectral energy along the axes. characteristic of sharp edges, and a large
value at the DC'.

The digital approach seems well suited to differentiate between the two pulse types and the
unpulsed data in both the 16 x 16 and 32 x 32 Fourier component tests. The difference between the
maximum and minimum values is rarely greater than 0.1 save for values of H = 1.0. This implies




[ H/t [ 18° | 36° | 54° | 72°
0.4 (Random) | 1.164 [ 1.212 | 1.248 | 1.249
0.4 (Uniform) | 2.015 | 1.994 | 1.979 | 1.976
0.6 (Random) | 1.097 | 1.124 | 1.150 | 1.145
0.6 (Uniform) | 1.992 | 2.018 | 2.033 | 2.051

Table 4.5: Digital fractal dimension results D for 16 x 16 Fourier components with parameter H,
illumination angle ¢, and uniform or random pulse as indicated.

[ Hjt | 18° | 36° | 54° | 72° |
0.4 (Random) | 1.330 | 1.418 | 1.462 | 1.467
0.4 (Uniform) | 1.973 | 1.969 | 1.942 | 1.940
0.6 (Random) | 1.233 | 1.322 | 1.370 | 1.370
0.6 (Uniform) | 2.071 | 2.106 | 2.113 | 2.126

Table 4.6: Digital fractal dimension results D for 32 x 32 Fourier components with parameter H,
illumination angle ¢, and uniform or random pulse as indicated.

that a deviation greater than 0.1 may show a potential region of interest, and may warrant further
investigation by either human or electronic processing. Most of the uniform pulse images were at
least 0.1 from all of the unpulsed images with that H value. All of the random pulses were even

further away.

Turning our attention to the optical setup, we see that there is a bit of a reduction in the
ability to discriminate the random pulse and unpulsed data. However, usually there is still little
overlap between the two. Here, we discriminate the uniform pulse much more easily than in the all
digital process. The difference in performance characteristics may have been the result of noise in
the SLM. Upon viewing the output from the SLM, there were several lines of light, parts of which
should have been turned off. Also, the light passing throughout the SLM at the region containing
the random pulse did not appear distributed properly. This may have contributed to the poor
performance. Pixelation was not as much of a factor as it could have been. As noted earlier, we
digitally blocked the axes when calculating the power spectrum. This should have reduced, if not

| H/t [18° [ 36° | 54° | 72° |
0.4 (Random) | 1.688 [ 1.739 | 1.616 | 1.590
0.4 (Uniform) | 2.183 [ 2.016 | 1.958 | 1.960
0.6 (Random) | 1.779 | 1.692 | 1.681 | 1.691
0.6 (Uniform) | 2.224 | 2.062 | 2.037 | 1.992

Table 4.7: Optical fractal dimension results D for 16 x 16 Fourier components with parameter H,
illumination angle t, and uniform or random pulse as indicated.
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[ H/t 18° | 36° | 54° | 72°
0.4 (Random) [ 1.790 [ 1.867 | 1.832 | 1.810
0.4 (Uniform) [ 2.185 | 2.084 | 2.066 | 2.036
0.6 (Random) | 2.005 | 1.870 | 1.785 | 1.735
0.6 (Uniform) [ 2.071 | 2.106 | 2.113 | 2.126

Table 4.8: Optical fractal dimension results D for 32 X 32 Fourier components with parameter H,
illumination angle ¢, and uniform or random pulse as indicated.

eliminated the effects of pixelation. However, it also removed the spectral energy we expected to
see in the uniform pulse.

4.3 PERFORMANCE COMPARISON

Each approach described has strengths and weaknesses. The primary advantage of the optical
system is that the potential speed is far greater than that offered by any of the reasonably priced
digital alternatives. Semetex claims a 50fps frame rate on its 256i device. Thus, 250 Fourier
transforms can be performed optically in the time it takes to calculate one FFT on the digital
platform used here. This assumes that computer hardware controlling the optical system can
retrieve imagery at a minimum of 50fps.

There were several disadvantages when using the optical system as well. The optical system
seemed more prone to noise, and the Semetex requires a great deal of fine tuning to get the
image displayed properly on the device. Incorrect switching of entire rows and columns of pixels,
SLM pixelation, and nonuniform illumination of the SLM all combined to produce noise at the
detector array. Optical aberrations and imperfect alignment generated crosstalk, further degrading
discrimination ability. Additionally, the Semetex often requires more than one write to the array
to eliminate large horizontal bands of light from passing through the device. We failed to match
Semetex’s 50fps frame rate on the 256i.

The advantages of the digital system involve the ability to reduce the noise levels of the process.
Based on the results in the tables below, for a given H value, the fractal dimension measure D
has less variation in the digital system than the optical. FFTs have been sufficiently debugged,
and computer performance has become increasingly cost-effective that digital FFTs are offering a
serious challenge to the speed benefit derived from optical image processing. This is especially the
case when considering the time and resources required to write information to the SLM and read
that data back from the CCD array. Also, the digital system does not require throwing away as
much information as does the optical system. Digital systems use eight bit gray scale data, while
optical systems require us to eliminate seven of those eight bits.

The main disadvantage offered by the digital approach compared with the optical system is
speed. Optical systems have the potential to outperform digital systems since they compute Fourier
transforms at the speed of light. However, severe bottlenecks exist when writing an image to the
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SLM and reading its Fourier Transform from the camera. Improvements in optical device and
analog to digital conversion technology may overcome these bottlenecks.

Based on the performance of the techniques discussed, it is possible to segment square pulses
from fractal backgrounds based on the fractal dimension measure. This implies that there is some
merit in considering how this approach deals with more sophisticated shapes occluding portions
of more realistic scenery. The next logical step in this line of investigation is to look at scanning
across high resolution imagery to detect areas where abrupt changes in the fractal dimension occur.

Though the capability to view even small (256 x 256) optical images in anything approaching
a real-time fashion is expensive with the off-the-shelf technology, this technology has applications
to other areas in which that capability is not much of a consideration. These techniques could be
employed to highlight regions within images taken by various pieces of medical scanning equip-
ment or to automate the process of searching for regions of interest within aerial or space based
reconnaissance imagery. Applications requiring real-time image processing may benefit from these
techniques when the optical device technologies mature sufficiently.
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OPTICAL NEURAL NETWORK
CLASSIFIER

Current work focuses on using the adaptive nature of neural nétworks to compensate for optical im-
perfections and noise in classifier systems as well as creating a more compact feature representation.
The inherent parallel processing capabilities of opto-electronic processors and the relatively simple
computational requirements of artificial neural networks make optics a good candidate for hardware
implementation of neural networks. Neural networks require large numbers of interconnections for
which optics can facilitate high-density, non-interfering parallel connections in free space. Optical
systems suffer from the problems of noise and optical imperfections for which on-line learning can
provide additional system robustness.

The radial basis function (RBF) neural network is an adaptive system that learns on-line and
has been successfully used in many multi-dimensional classification applications including radar
signal classification[39, 40, 41], 3D object recognition[42], speech recognition[43], and handwritten
character recognition[44, 1]. It has been reported that while having equal or better performance
than back-propagation neural networks on classification tasks, the training times for RBF networks
are much shorter[45].

A hybrid opto-electronic implementation of a RBF neural network as shown in Figure 5.1 has
been demonstrated as an adaptive real-time classifier/interpolator [1, 7]. Using a bipolar encoding
scheme a true Euclidean distance computation can be performed all optically (see Figure 5.2).
The current implementation requires binary inputs and binary node locations. This binary vector
representation is well suited to feature-based 3D object recognition, character recognition, and
certain other multi-dimensional classification tasks. In this feed-forward network the learning of
the weights and the gaussian widths is performed after the distance computation and can be
implemented with analog VLSI or DSP technologies. The use of analog VLSI post-processing
electronics allows the system to retain the flexibility and accuracy of electronics while letting
the optics perform the massively parallel computations and data reduction. This architecture also
offers ease of scalability and fully parallel input/output capability for real-time real-world problems.
Details of our work in this area can be found in reference [1].
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Figure 5.1: Diagram of RBF neural network.
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Figure 5.2: Adaptive optical radial basis function neural network.
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CONCLUSIONS

We have presented two systems for use as real-time signal classifiers. Both the optical correlator
and the optical neural network architectures are versatile enough to be applied to many different
problems without hardware modifications but by changing only the data representation and refer-
ence templates. This implies that a single generic architecture may be fabricated for use in both
military and civilian applications. The reduced-resolution optical correlator that we have presented
offers the advantages of shorter correlator length, faster SLM addressing, decreased memory require-
ments, and cost reduction. The optical neural network offers the capabilities of adaptive training
and on-line calibration of the optical system as well as faster classification times as compared to
correlators.

The problems of object distortion invariance and adaptation to system imperfections have been
addressed in order to make the systems more reliable in ‘real-world’ problems. Due to the large
variability in real-world images there exists a need for enormous template libraries for recogniz-
ing even a single 3D object. To perform faster recognition in real-world scenarios the trend in
correlation-based systems is to incorporate more distortions or simply multiple reference objects
into a single template. This is typically done through the use of SDF filters. We have shown that
the use of SDF filters can provide selected invariances to distortions typically encountered in Air
Force applications. We have also shown that only a few distortions or objects can be placed onto
a single filter before the performance becomes intolerable. This leaves us with the need to still
perform sequential searches through large template databases when using a correlator. Neural net-
works offer the capability of encoding the feature space of the entire set of templates into a single
system. This enables the neural network system to perform a parallel or ‘one-shot’ classification of
an unknown input. '

We have presented two optical pre-processor systems for use with an optical correlator or neural
network. The log-polar coordinate transform system offers a scale and rotation invariant feature
space which can reduce the number of filters needed for template matching. The optical fractal
dimension estimator system which can be useful for quickly identifying smaller regions-of-interest
in large scenes. :

Our near-term plan is to focus on the development of adaptive optical neural network architec-
tures and algorithms in order to exploit the capabilities of on-line training and system calibration

31




and to perform ‘one-shot’ classification. Two of the neural network paradigms we are currently
developing are the radial basis function [1] and pulse-coupled neural networks [46]. We are also
currently investigating the use of wavelet transforms, both optical and electronic implementations.
for use as pre- and post-processors for the classifier systems. As the devices used in these optical
systems are improved in terms of speed, size, and optical performance the advantages over electronic
systems will become more evident for real-time processing.
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